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A ONE-DIMENSIONAL, TWO-PHASE FLOW MODEL FOR TAYLOR
IMPACT SPECIMENS

§.E. Jones
U.S. Air Force Academy
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P. P. Gillis
University of Kentucky
Lexington, Kentucky

J. C. Foster, Jr. and L. L. Wilson
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ABSTRACT

In this paper, a simple theoretical analysis of an

old problem is presented. The analysis is more
complete than earlier versions, but retalns the
mathematical simplicity of the earlier versions. The

major thrust is to separate the material response into
two phases. The first phase is dominated by strain
rate effects and has a variable plastic wave speed.

The second phase s dominated by strain hardening
effects and has a constant plastic wave speed.
Estimates for dynamic yield stress, strain,

strain-rate, and plastic wave speed during both phases
are given. Comparisons with several experiments on
OFHC copper asre included.

NOTATION

Aq cross-sectional ares of the undeformed specimen

A cross-sectional ares of the deformed specimen

D0 diameter of the undeformed specimen

D diapeter of the mushroom at the c¢onclusion of
phase 1 deformation

D diameter of the interface betweer, Phases 1 and Il

5/ diameter of the interface between Phases 1 and Il
after conclusion of the event

Df diapeter of the mushroom at the conclusion of
event

. engineering strain

@  engineering strain at the end of Phase 1

distance from the undeformed anvil face to the

plastic wvave front

) distance from the undeformed anvil face to the

plastic wave front at the end of Phase I
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distance from the undeformed anvil face to
phase I portion of the plastic wave front
the conclusion of the event

the
at

undefornmed section length
undeformed section length at the end of Phase 1

final undeformed specimen length

original specimen length
final specimen length

displacenment of the rear end of the specimen

displacenent of the rear end of the specimen at
the end of Phase 1

final displacement of the rear end of the specimen

time

time at the end of Phase I

terminal time

speed of the plastic mater.al at the plastic wvave
front

undeformed sect{on speed

impact speed

volume of the materisl in the Phase ! deformation
zone

average flov strength during secondary deforsation

secondary plastic wave speed *
engineering stress

mass density of specimen
differentiation with respect to time




INTRODUCTION

In the 1940's engineers and scientists began to
probe the dynanic mechanical properties of materials
using the high speed fmpact of a cylindrical specimen
sgainst a massive anvil. This test is nov usually
called the Taylor impact test or the Taylor anvil test
after Sir Geoffrey Taylor who published the first
analysis of it {1l]. Taylor approximated the complex
real situation as a one-dimensional problea in which
any effects of rad{al motion were assumed to be

negligible. He also approximated the complex
constitutive behavior of the specimen as simply a
rigid, perfectly plastic material.

During the ° intervening  ysars very  many
investigators have attempted to improve upon the
original Taylor analysis. Either the mechanical
equations used were wmade more accurate or the

constitutive description of the material was smade more
complex. And sometimes both approaches wvers used
simultaneously. To date, howvever, there has been no
{mprovement to the Taylor theory that has achieved
wvide-spread acceptance. In most laboratories wvhere the

Taylor test {is performed, it {is interpreted using
Taylor's original theory.
Beginning about 1960 there have been various

computer codes written that can provide a more-or-less
complete analysis of a Taylor {mpact test, providing
the material constitutive relation is  known.

Nevertheless, simplified approximate analyses of the
type originally offered by Taylor still have practical
utility. They provide the means for & relatively fast
and economical interpretation of test results. Also,
they can provide a certain degree of {nsight into the
effects various test parameters produce on the final
results. For those reasons, yet another
one-dimensional analysis of the Taylor impact test {s
presented here.

This current analysis is based upon observations
emphasized by Bell [2] {n 1960. Bell’'s experimental
work on rod impact led him to the conclusion that there
wvas a brief, initial phase of the plastic deformation
entirely different from the subsequent specimen
response. Here Bell’'s conclusion {s taken as
Justification for a one-dimensional, but two-phase,
analysis of the Taylor test. This present analysis
follows the same general lines as an earlier one phase
theory (3).

The differences introduced here can be summarized
fairly easily. During Phase I, the rigid, plastic
yleld strength is allowed to be different from Phase
11, the plastic vave speed (assumed constant in Phase
1) is a time-dependent function, and the material
particle velocity u is time-dependent, Taylor (1)
approximated this particle velocity ss zero throughout
the entire deformation process. In thia analysis the
particle velocity is taken to be nonzero throughout the
event.

The Phase 11 analysis 1is similer to that given

earlier [3]. However, during Phase 11 deformation, the
particle velocity u {s taken to be proportional to the
current undeformed section speed v.
It 1s believed that the two phase model provides
a more accurate basis for the analysis of the
Taylor Test. Yet, the present systean of equations {is
not & lot more complicated than that given earlier (3]
or Taylor's original theory [1).

€or

THEORY

Consider a uniform cylindrical rod of mass density
p which fopacte & rigid acv.i. normally #~d with inicial
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speed v,. The plastic deformation of the rod proceeds

in two phases: the primary, or Phase I deformation
phase, which 1is dominated by strain rate effects and
high plastic vave speed and the secondary, or Phase II
deformation phase, which is probably dominated by work
hardening effects.

The classic Taylor [l] equation of motion of the
undeformed ssction of the specimen has been modified by
the authors to account for mass transfer across the
plastic vave front. The modified equation is given by

tve l(\hu) - m:—.) (1)

vhere v i{s the current speed of the undeformed section,
¢ {s the current undeformed section length, ¢ is the
engineering stress at the plastic wave front, e {s the
enginesring strain at the plastic wave front, and u {s
the particle velocity of the plastic material
imnediately inside the plastic wave front. HKotice that
under the .assumption of constant volume deformation the
engineering trus strain e 1is given by ¢ = AO/A -1,

Superimposed dots denote differentiation with respect
to time, t. Equation (1) is valid during both phases
of the deformation process.

The characterization of each distinct. phase is
determined by sssumptions regarding the plastic wvave
front motion and the particle velocity, u, inside the
wave front. During Phase I, the particle velocity of
the plastic material 1s determined by the anvil
compliance, the specimen material, the impact velocirty,
and the current speed of the undeformed section. At
the same time, the plastic wave speed is basically a
function of these same quantities during this phase.
Evidently, both the particle wvelocity behind the
plastic wave front and the plastic wave speed are
complicated functions of the determining wvariables.

However, within the context of this the Eulerian
plastic wave speed will be approximated in an
elementary way and the anvil compliance will be

neglected entirely. The particle velocity behind the
plastic wave front will be developed from some simple
mechanical considerations.

1 Ut

Figure 1. Schemstic viev showing a Taylor impact
specinen of original 1length L which

undergoes plastic deformation.




In Figure 1, the reader will note that h denotes
the current observable position of the plastic wave
front relative to the anvil surface. Fros typical film
data collected on OFHC copper rods impacted against a
steel anvil in the Materisls Testing Laboratory at
Eglin Air Force Base, Florida [4), it was noted that
the plastic vave motion relative to the originsl anvil
surfece {s linear after the first few microseconds of
the event, as shown in Figure 2 excerpted from (4).
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Figure 2. Graph taken from Molitoris [4] showing
measurenents of actual film data
conpiled during the impact of an OFHC
copper specimen {mpacting a steel anvil.
This data indicates that after the first
few microseconds the Eulerian plastic
wave gpeed is constant.

However, 4{n the first few microseconds, the
plastic wvave 1s much higher than the later “"steady
state” value and the motion s quite nonlinear.
Motivated by these observations, we are 1lead to
consider

hot". 0Ostst
() =1 \(e-T)+h Tets t, @

wvhere h and t are the distance of the plastic wave
front and the time at the end of Phase I. ho and n are

positive constants with 0 < h < 1, and for that reason
h is a continuous function of time. Applying (2) st

time t gives

-n
E—hot 3
W¥hen the event resches conclusion, h = hj and t = t/’
which means that
h,-h
x--—[——_— (4)
t! -t
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Figure 3. Craph showing the position of the
plastic wave front relative to the
undeformed envil face. b and b, are

distances of the plastic wave front from
the anvil face at the end of Phase I and
at the end of the event, respectively.

t end t, ere the {nterface and terminal
times, respectively.

The kinematical analysis in this problem consists
of adding the current lengths in Figure 1 to obtain

t+s+he=1 (5
which 4s wvalid during both phases of the
deformation. Differentiation of (5) gives

les+haelevehaeo (6)
vhich also {s wvalid during both phases of the

deformation. During Phase 11, h = A, which reflects
the constant wave front speed observed in Figure 2.

A conservation of mass relation for the plastic
material can be developed by equating the distsnces {n
Figure 3. This leads to
)

cl-v-u

This {5 a fundamental equation in our further snalysis.

r—l"—ﬂ

t=ar W
] |
asticer L-s-a1 )

Figure &. Schematic $llustration of the rear
portion of the projectile. durine the
time dnterval 4", the fror. of the
ind{cated goction s displaced @
distance uAt, while the vrTear is

displaced vat.




PHASE 1 DEFORMATION

The initial deformation phase is characterized bdy
rapid mushrooa growth. During this deformation, it has
been observed from film data on OFHC copper specimens
that there is virtually no change in the velocity of
the undeformed section [5]. Thus, we are motivated to

sssume that v = v, and v = 0 throughout Phase I. This
reduces equation (1) to

L4
l(vo-u)-m (8)

during the primary deformation stage.
(6) reduces to

Also, equation

- (v°+fx) 1$))
Combining this equation with (7) gives
v, = u
e = - 0 (10)
Vo * h
for the time dependent strain directly behind the

plastic wave front. Eliminating ! and e in (8) with

(9) and (10) leads to an expression for the time
dependent stress during the Phase I deformation.
o==-p (u+h) (vg=w (11)

where h must be specified from (2) for t s T and u will
be determined subsequently. Notice that because 0 < n

<1, h is singular at t = 0. This means that the
calculated stress {s infinite at t = 0. Evidently, the
stress is not infinite at impact. This conclusion {s
the result of the infinite propogation rate for the
plastic wave front predicted by (2) at impact. The
propogation rate is initially wvery high, but not
infinice.

The particle velocity u is generally s complicated
function of t. For this analysis, we will assume that
it can be estimated in a very simple way. Suppose that
the mushrooming region can be spproximately represented
by a cylindrical section (see Figure 4) with volume

V = Ah (12)

wvhere

A=A/ A se (13)

In these equations, h is the current position of the

plastic wave front, A is the current mean
cross-sectionsl area of the wmushroom, and AO is the
original cross-sectional area of the specimen.

22

A

Ideslized Phase 1 deformation of a rod
twpsct specimen. The mushroom region is
approximsted by a cylindrical section of
attitude h.

Figure 5.

Notice that e can be eliminated from (13) by means of
(10), allowing A to be expressed as

v, +h
_‘L_'_ (14)
u+h

A~ Ao

and V to be expressed as

Vo + h

u+h

V=A h (15)

0

However, the volume of the material in the plastic
deformation zone must equal the volume of the material
lost by the undeformed section. This means that

Ve Ao (L~8) = Ao (s+h) = Ao (v0t+h) (16)

I deformation and

where s = vyt during Phase
equation (5) has been used to eliminate t. By
equating (15) and (16), we obtain
v .
h ——9—:72- - vot +h (17)
u+h
This equation can be used to find u.
h-th
UT Vo vgEs R {ae)

This relation gives the particle velocity of the
material directly behind the plastic wave front ss &
function of time. Since we have assumed that the
particle velocity of the plastic materisl {s uniform,
this relation and (10) gives us the cross-sectional
area of the mushroom as a function of time.

Observing that h = hotn during Phase I,
(18) to c e

reduces

u = vo by (1=m) (vozl"‘ . ho)’l (19)

Notice that the initial particle velocity is given by
u(0) = vo(l-n) and u decreases as Phase 1 deformation

proceeds, as shown in Figure 6.




Figure 6. A typical particle welocity curve, as

predicted by the theory. The particle

velocity at impact is given by Yo = Vo

(1-n) and decreases with time during
Phase 1 deformation.

Equation (19) allows us to evaluate the
time-dependent scrain e in the cylindrical mushrooming
region.

n ~1l.-1

-1
+ ho) (vo + nhot. )
(20)

1-n 1-
e - -vo (vot + nho) (vot

Notice that the strain on impact is equal to zero and
increases (compressively) as Phase I continues. The
mushroom growth can be estimated from (20), but cannot
be compared directly to the radial growth zurve at the
anvil interface. However, a favorable comparison can
be achieved by taking the current wvolume of the
pushroom rtegion from (15) and replacing this
drical section with a conical frustrum (see Figure 7).
This produces a somewhat better approximation to the
radial growih curve at the anvil interface, but still
underestimates the experimental observations.
Nevertheless, this elementary theory for Phase I
deformation qualitatively agrees fairly well with the
experiment.

-

£

T
N4

4
(4
(4
-,

A schematic view of the cylindrical
sushroom section with a conicsl frustrum
spproximation to the volume contained in
the cylinder. At the anvil-specimen
{interface the actual mushroom (dashed
curve) should have larger radius than
the base of the conical frustrum and &
such larger radius than the cylindrical
section. Esch has the same height and
volume .

Figure 7.

cylin-
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PHASE 11 DEFORMATINN

As indicated sarlier, sscondary plastic
deformation is assumed to begin when the Eulerian
plastic vave speed h reaches some value, 88y A, During

Phase 1I 4§t is assumed to remain constant at this
value. There will bs a monzero particle velocity u
during this deformation. This particle velocity may be
roughly assumed to follow the profile of the undeformed
section speed during Phase 11 deformation. When the u
curve has this type of profile, the secondary geometry
for recovered specimens has the correct curvature (see
Figure 8). Motivated by this, we are led to postulate
a constant k such that

u=kv (21)

fortsts t,. This constant will be determined in

the course of the subsequent analysis.

—tpd

'.r’-—}*-"——-"

i) I\J‘

777 T/// YRR

Figure 8. Idealized deformation geometry after
Phase 11 begins. Notice the curvature
of the Phase 11 deformation zone.

When the deformation reaches Phase 11, equation

(6) becomes

te-(aA+V) (22)

Combining this with equations (7) and (21) leads to an
expression for the strain

e = ~(1-k) _.v"_.__.

oy (23)

Suppose that the average dynamic compressive yleld

stress during secondary deformation is o = -Yz. Then,
equation (1) becomes
Y
. - - - 2 A+ vV 2“)
v+ (1-k) ¢ v — e (

Using the chaln rule of differdbtistion, and (22} to
replace !, equation (24) transforas to

Y
dv 2/ _ (ye - 25
tgr TR v -t (2




As the right hand side {s & function of v only, this
equation has separable variables. The separation and
subsequent integration lead to

1
2/p

A ] 3
Yz/p-x(l-k)v~k(1-k)v

!

£ [

EAK)  Q+A(l-k) + 2k(1-k) v
x (26)
qQ*A(1-k)  @=A(1-k) = 2k(1-k) v

2

¢ - a?

vhere (1-&)2 +
2
Yo/p = A(1-k) vg - & (1-k) vo ? 0, ¢

undeformed section length. This equation expresses ¢
as a function of v. When {(26) and (22) are used in
(24), ve again find a separable differential equation.
This equation has separsble variables in velocity and
time.

4 Yz k (1-k)/p,
and £, is the final

Eve=(24+v) f(V) @n
vhere f(v) 1is given by equation (25). Integration
of (27) gives

v
h,-h
dv [ (28)

[4
fgo S I eV () X
0

This equation gives the time as a function of the
current velocity of the undeformed section during Phase
11 deformation.

Another integral of (27) is available through the
change of variables v = v dv/ds, but this integral is
algebraically dependent on (26) and (28). We will not
pursue the integration of (27) any further.

The last equation for the analysis of Phase 1I
deformation is based on a kinemat{c analysis of Figure
8, using the assumption that the particle velocity of
the plastic material is approximately uniform during
Fhase 11 deformation. Notice that the plastic wave
front has reached a position h from the anvil surface

at the end of Phase I and then travels to h, at the
conclusion of the event. This distance can be
approximated by
t
S
ﬁ-'ﬁ,-lua: 29)
t
By using (21), the equation cen be reduced to
h- E!- k (A - 3) = kis, = voT) (30)

The constant of propertionality k can be determined
from this equation.
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POST-TEST MEASUREMENTS AND ESTIMATES

Figure 9 shows a profile viev of a typical OFHC
copper specimen which has been impacted against a 4340
steel anvil with an initial speed of 187 a/s. Beside
the deformed specimen {s an undeformed specimen of the
same {nitial dimensions. Notice the distinct curvature
change which occurs st the interface betwveen Phases 1
and 11 (see Figure 10).

Profile viev of actusl undeformed and
deformed specimens. Note the dramatic
curvature change that occurs between the
primary and secondary plastic
deformation zones. For the deformed
specimen vo " 187 m/s, L = 38 mm, and

Figure 9.

De=17.5m.
Ap

T

7]

-

Ly

7, z

i
P7777777777¢777777777777707

77////|

Schematic view of undeformed and
deformed specimens ‘‘shoving post-test
measurements. Phases 1 and 11 have been
labeled. For the actual deformed
specimen shown {n Figure 9, L - 208.68

= 2.67 =0

Figure 10:

s, l/ = 11.68 sm, and S/




Figure 10 s @& schematic viev showing the
post-test measurements. Prior to testing, the
undeformed length L and cross-sectional area Ay have

been measured. After {mpact, the overall specimen
length L!. the length of the primary deformation region
ﬁ/. and the remsining undeformed length l[

measured. Additionally, 5, and D, the dianeter of the
and the mushroon dianeter,

are

specimen fnterface are
measured.

Ve will nov obtain an estimate for I based on an
elementary estimate for the volume of the mushroonm.
Observe, from Figure 9,that the mushroonm can be well
approximated by the frustrum of a cone. Estimates of
this type do not originate with us (see (8] or [9]),
but, within the context of this paper, they are new.
In terms of the diameter of the mushroon D! and the

interface diameter 5,. the volume of the material in
the Phass 1 deformation zone at the end of the event is

=3 3
2 1-0/%

1
)
An interesting observation can mnow be wmade

regarding the Phase 1 deformation zone. The mushroom
region undergoes considerable deformation after the
completion of Phase 1 (see Figure 11). However, in
spite of this, the volume contained in the mushroom of
the recovered specimen is approximately the same as the
volume of the Phase 1 deformation zonme at the
completion of Phase I. Tonfirmation of this fact has
been found through a comparison of the volume estimated
by (31) and the volume estimated from the high speed
film data at the time when Phase 1 has just been

coppleted. The two agree to within 10%.
] ?
m Y (a)
-
b
5/ \\
l 1 1
|
//I’///////////7//Z47/////////

Figure 11: An exaggerated view of the mushroom
geometry (a) at the end of Phase 1
deformation, and (b) the end of the
event. The sushroom suffers
considerable axial compression during

Phase 11 deformation.
Using the observation {n the previous paragraph,
we can say that volume contained in the undeformed

section at t = T is le‘ Since the volume contained in

the msushroom is V, {t follows that

25

l-;(x-r}a) (32)

vhere 1A, is the volums of the undeforsed specimen.

This estimate for the undeformed section length at the
end of Phase 1 fs quite sound,

RESULTS

The tvo-phase theory presented in the previous
sections provides for a useful interpretation of the
Taylor iwmpact test. In this section, we show how the
post-test measurements can be used in the theory to
predict dynamic yiesld stresses and plastic vave speeds.
We will deal with each phase sesparately, beginning
with Phase 11,

Certain key variables pay be assuned to be
continuous at the interface betwesn the phases and ths
valuss of thess variables are essumed to be known. ¢,

h, s, and v are all assumed to be continuous at t = €.
From the post-test measursments, we can produce a very

relisble estimate for I by squation (32). Ve know that
s - vof and R e L =-7-73. Hence, when T is known, all
of the appropriaste lengths and displacements are known.

We have reason to believe that t is roughly constant
for impacts {nvolving the same material against the

same anvil. Specifically, t is a function of the
specimen diameter and the specimen material, provided
that the fimpact velocitles are sufficiently high. A
heuristic argument cen be presented which justifies
this conclusion. When the impact pressures are high
enough to cause the radial relief waves to propagste at
the same speed, the time for communication with the

free boundary is constant. The interface time, t, is a
function of the time for the radial stress waves to

return from the free surface, reflect from the
specimen/anvil interface, and to {nteract with the
longitudinal plastic wave front. High pressure

equation of state data such as that presented by Walsh,
Rice, McQueen, snd Yarger [11) and Marsh [12] support
this conclusion. The adiabatic compressibility

.

is nesrly constent for a number of important materials.
Thus, the rate of propagation of a radial stress vave

-1
k=%

a3y

v l/pk. {s nesrly constant for pressures that are

sufficiently high (say, 2-5 GPa). When the speciamen
and anvil materials are dissimilar, radislly reflected
stress waves will reflect from the specimen/anvil
interface, combine, and propagste longitudinally to
produce an interaction with the plastic wave front that
separates the two phases. For thirty caliber rods, the
time for this interaction will be roughly constant for
a given material.

Accepting the argument just -put forvard for the

{nterface time t, we can mov estimate all of the
lengths at the ond of Phase I. Then, we can use the
slementary two-phase theory to estimate the stresses
and plastic wave speeds for the material during both
phases of the deformatfon,.




Before turning to the calculations, we descride
the results of three experiments on OFHC copper. The
data from these experiments will be processed using the
foregoing theory. A complete description of the
experimental apparatus and data acquisition techniques
is contained in Wilson, House, and Nixon (10]. Figure
12 shows the rtesults of the three tests and is
published here with the permission of the authors. All
of the specimens were shot from a 30 caliber gun end
had an undeformed diameter of 7.60 mm. In two cases
(UK14S and JG30), the specimen aspect ratio was 7.5:1.
In the other case (JG32), the specimen aspect ratio wvas
$:1. The data in Figure 12 has been reduced from high
speed camera pictures taken during the experiments.

The Cordin Camera was operastad st a rate of 106 frames
per second during JG30 and JG32, The camera wvas

operated at a rate of 3 x 10s frames per second during
UK145. Notice that the trend in the data precisely
reflects the two-phase flow hypothesis. Notice, also,
that the time for transition betwsen the phases 1is
approximately the saze for sll three specimens. In the

analysis that follows, this time {s taken to be
T=9x 10-6 sec.
200 Test UK= 148 JG=30. JG-32
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Plastic wave motion and radial growth
curves for thres i{mpact experiments on
OFHC copper. The {mpact speeds are
roughly the sane. Secondary plastic
flov proceeds with constant vave speed,
A. The details of these experiments are
contained in (10]}.

Figure 12.

First, we will present the results of the
calculations for Phase 11 for the three OFHC copper
tests. The Phase 11 theory i{s developed by extending
equations (26) and (28) to the interface between the
phases. When this is done, they become

1

1-¢ /e
7| vymaa-0vgeka-v)
1
q

q=A(1k) q+r(l-k) + 2k(1-k) vo
x (36)
q+A(1-k) q-A(1-k) - 2k(1l-k) Yo

and

33)

v
-k [0 e
G+ ftv)

vhere ¢ {s taken from (26) and f(v) &s defined in (23%).
These two equations and (30) comprise the system for

the analysis of Phase II deformation. The unknowns are
Y2 A, and k. As mentioned earlier, t = 9 x 10.6 sec.

The input data from the post-test measurements is
given in Table 1.

TABLE 1
Tent lepact | L/O| Piaal Pinat Undeforwed Frame H-utul—l
[ Velocity length | Diamster Langth Rate Condition
a/s (inch) (inch) {inch) (sillfion)
- 165 189 7.3 11 6 0.5 0.662 03 As louhud}
JG-30 17¢ 7.3 | 1.609 0.% 0.9% 10 As loulnd‘
JC-32 200 $0 |1.002 0.38 Y3 1.0 As Received'

The results of the Phase II analysis using (34),
(35), and (30) are given i{n Table 2. Comparing the
secondary wave speed, these results are in excellent
agreement with the experiment.

TABLE 2
“ast A A Y, & t, B . T
. a/s a/s | % » et - - -
UK143 | 189 176 1% 0.2¢7 1173 ¢ 09 1.702 49 27
Je0 176 161 30% 0.213 m 9 88 1.97% 30 030
Jei2 200 19¢ 400 0.292 ny 3.03¢0 1.000 31 w2




A least squares fit to the reduced film dats in
Figure 12 for UK145 and JG30 gives an experimentally
observed value of 173 a/s for A. Notice that the
calculatad values for the secondary wave speed for
these tvo tests differ from this experimental value by
less than 78. The aeverage dynasic yield stresses are
cslculated to be 350 MPa and 305 MPs, respectively.
These estimates are entirely reasonable. The static
yield stress for this materisl is roughly 225 MPa by a
0.29 offset on tension test data.

The difference in the predicted Fhase II stresses
for UK145 and JG30 can be attributed to the difference
in average strain rate during Phase 11 deformation.
The terminal time for JG30 {s predicted to be about 14
#s longer than UK145. Hence, the average strain rate
sust be lover end the dynanmic yield astress 1is
correspondingly lower.

The results for JC32 are also quite acceptable.
The ¢ynanic yield stress estimate s 408 MNPa, which
Tepresents an increase of 814 over static yield. This
is & reasonadble conclusion for & 5:1 specimen. The
terninal time is wuch shorter (71.3 us predicted) and
this wmeans that the average strain rate during
secondary deformation f{s wuch higher. Hence, the
higher predicted value for Y2’ The secondary plastic

vave speed is predicted to be X = 196 m/s. This {s
also entirely reasonable.

The Phase 1 snalysis consists of determi- {ng the
exponent n from the equation for the initial particle
velocity

u(0) = u, =

o~ Vo (1 - n) (36)

When the {ni{tial particle velocity is known, n can be
found from (36).

Having found n, ho,
kinematical relation

F=nh "

R R o TR TN K

o 3N

it follows that h0

front motion

Since ! end t are known, can be

found from (37) This means that the wave
is completely determined.

Estimates for the initial particle velocity have
been given by several {nvestigators (e.g. Walsh, Rice,
McQueen, and  Yarger [11}). Based on their
considerstions, we may roughly assume that uy = vo/2

Using (36),
Using this value of n in (37),

for a copper rod impacting a steel anvil.
this leads to n = 1/2.

we can determine hO'

Having determined h = h(t) during Phase I, we can
compute the stress from (11), the particle veloc’ y u
from (19), and the engineering strain in the sushroom,
e, from (20). The strain-rate during wmushroom
formation csn be found by differentisting e in (20)
The results of some of these calculations are given {n
Figures 13, 14, 15, and 16.

Figure 13 shovs the comparison of the predicted
wave front position with the experimental observations
from reduced filp dats during the early stage of
deformation. The comparison {is very favorable.

can be determined from the.
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Figure 13. A comparison of the theoretical
prediction for plastic wave front
position as a function of time (solid
curve) with the experimentally observed
position 4. The experimental data 1is
from JGIO and the theoretical prediction
is for n - 0.5.
In Figure 14, the stress-time curve is given.

This calculation has been made by means of equation
(10) with n = 0.5. The result here {is quite
reasonable. Note that ¢ must be initially unbounded
because n < 1. But, ¢ quickly reaches a value of about
400 MPa at 8 us. These conclusions are for JG30.
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Figure 14. The stress-time curve during Phase 1

deformation. This result 1s from

equstion (11) with n = 0.5. The

post-test data {s from JG30. Although

this stress {s compressive, it has been
displayed on a positive ordinate for
convenience.

As indicsated earlier, the strain-rate during Phase
1 deformation can also be calculated from (20). This

result is presented in Figure 15. For convenience, .
has been plotted as a positive ordinate. although {t is
negative.




San'y’
-
*
.
*
L]
.
L]
*
.
¢ ] . ) . s
¢ {ns)
Figure 15. The strain-rate vs. time curve during

Phase I deformation. The strain-rate
shown here {s the result of
differentiating equation (20) and using
the dats from JG30 with n « 0.5,

The results fros Figures 14 and 15 can be combined
to given an interesting result. Since the stress and
strain-rate during Phase I deformation sre known as
explicit functions of time, time can be algebraically
elizinated to produce a stress/strain-rate disgran.
Note the form of this graph in Figure 16.
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Figure 16. Stress/strain-rate diagram as predicted

by the Phase I theory for JG30 and n =
0.5. The relationship is nearly linear.

The stress/strain-rate diagram shewvn above {»
carried out beyond the point vhere it {s meaningful for

copper. MHowever, f{t is interesting to note that the
curve {n nearly linear, even vhile the strain {s
varying throughout Phase 1. This ({nteresting

conclusfon has been rteported {n several places for
constant strain (e.g.. ses Follenbee and Kocks [13)).

We close this section with one final comparison
with the experiment. In Figure 17 a comparison betwesen
the diameter grovth curve for the sushroom and the
theoretical prediction is given.
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Figure 17. Comparison  betveen sxperimentally

observed mushrooa diameter and Phase I
wmodel prediction (lower solid curve).
The improved estimate using the frustrua
of s cone approximstion is the upper
solid curve.

The growth of the mushroom predicted by the theory {s
lov when compared to the reduced film data from JG30.
However, as pointed out in the section on Phase 1
deformation, and described in Figure 7, this is to be
expected. An improvement can be achieved by replacing
the cylindrical mushroom section by the frustrum of a
cone with the same volume. This, evidently, reduces
the disparity between theory and experiment. But, as
pointed out earlier, even with this {mprovement, the
results cannot be expected to agree precisely with the
experiment.

CONCLUSION

The theory presented in the preceding secti{ons and
the supporting experimental evidence have provided some
new {nsight and i{mproved predictive capability for the
Taylor test. The {mportant thing to remember is that
all of this was accomplished without sacrificing much
of the mathematical sieplicity of the original Tayler

theory [1] or the recent theories proposed by us
{3.6,7].
The new two-phase theory can be used to explain

the deficiencies of the elementary theorles. For
example, consider the perfect plasticity theory
proposed by us [3]. For the three OFHC copper tests
discussed in the previous section, the elementary,
perfect plasticity theory presented (n [3]) gives the
results {n Table 3.

TABLE )
Test Y A t,
[ ] as " KPa » vec
TR143 18 201 e 1231
JC¥0 176 200 (31} 126 ¢
Jes2 200 e 9 %
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These estimates sre somevhat high for both the dynamic
yield stress Y and the plastic wave speed A. Ve can
now ses why the wave speed is high for the elementary
model. For example, the terminal time for JG30 s

t! = 131.1 us from the tvo phase podel and t! = 126.6

us from the elementary model. Yet, through post-test
measuresents both h-t curves are required to pass
through h! vhen t = t,. The result of forcing the

elementary mathenatical wmodel to conform to this
messurement is to overestimate the plastic vave speed
for the materlal in question. This situation s
described in Figure 18. [Notice that by forcing the
plastic vave speed to be constant throughrut the entire
event, we sust overestimate {t.

s
A
/l
E -
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¢ t
Figure 18. A comparison betweer. the plastic wave

front motion for the two phase model
(upper curve) and the elementary single
phase model (straight 1line) {3}. The
slope of the single straight line
through the origin exceeds the slope of
the secondary straight line.

The {increase in plastic wave speed produces a
corresponding increase in the estimate of dynamic yield
stress. This, coupled with the fact that radial
{nertia effects have been neglected, produces inflated
values for the dynamic yleld stresses.

Future work will desl with corrections for radisl
inertia during Phase I deformatfon. Such corrections
are only necessary and wmeaningful during mushroom
formation where the strain-rates are very high. During

Phase 1! deformation, the average strain-rates are
substantially lowver and compensation for yadisl
inertia is not required.
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